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Abstract. We present a consistent formulation of quantum game theory that accommodates all
possible strategies in Hilbert space. The physical content of the quantum strategy is revealed as a
family of classical games representing altruistic game play supplemented by quantum interferences.
Crucial role of the entanglement in quantum strategy is illustrated by an example of quantum game
representing the Bell's experiment.
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INTRODU CTION

The quantum game theory [1 , 2, 3, 4, 5] has two aspects. From one side, it is an extension
of conventional game theory with Hilbert space vectors and operators. From the other
side, it is an attempt to reformulate the description of quantum information processing
with the concept of payoff maximization.

In conventional game theory, strategies of players are represented by real-valued
vectors, and payoffs by real-valued matrices with no further specifications. In quantum
game theory, they are replaced by complex unitary vectors and Hemitian matrices.
It appears that the criterion of mathematical beauty alone favors the latter over the
former. Since the space of classical strategies forms a subset of the entire quantum
strategy space, it is quite natural to regard the game theory formulated on Hilbert
space as a logical extension of classical game theory. It is tempting to imagine that,
in search of natural extension, the quantum game theory could have eventually been
found irrespective to the discovery of quantum mechanics itself. A crucial questions
then arise: What is the physical content of quantum strategies? Which part of a quantum
strategy is classically interpretable and which part purely quantum? Answers to these
questions should also supply a key to understand the mystery surrounding the "quantum
resolution" of games with classical dilemmas [6, 7].

Obviously, the answers to these questions are to be obtained only through a consistent
formulation of game strategies on Hilbert space. When that is achieved, it can be used as
a springboard to deal with the second aspect of the quantum game theory; namely, quan-
tum games played with microscopic objects in states with full quantum superposition
and entanglement. In quantum information theory, concept of efficiency occasionally
arises. That would supply the payoff function once we are able to identify "game play-
ers" in the information processing. It should then become possible to reformulate the
problem with the language of quantum games.

In this note, we formulate quantum strategies for classical games with diagonalpayoff
matrices, and clarify the classical and quantum contents of the resulting payoff function.
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We will discover two striking features in the results; the existence of a third party, and
the mixture of altruistic strategies. We also sketch the game theoretic formulation of
quantum information processing through an example of Bell's experiment. Wenaturally
recover the Tsirelson's limit.
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GAME STRATEGY AND PAYOFF ON HILBERT SPACE

Westart by considering n-dimensional Hilbert spaces J^ and 3%bin which the strategies
of the two players A and B are represented by vectors \a)A e J%a and |/3)fl G 3%. The
space of joint strategies of the game is given by the direct product Jtf - M*ax J%b-A
vector in ffl?representing a joint strategy of the two players can be written [8] as

a,p;y) =J(7) \a)A \l5)B, (1)

where the unitary operator J(y) provides quantum correlation (e.g., entanglement) for
the separable states \a)A \J5)B. The two-body operator J(y) is independent of the players'
choice and is determined by a third party, which can be regarded as a coordinator of the
game.

Once the joint strategy is specified with J(y), the players are to receive the payoffs,
which are given by the expectation values of Hermitian operators A and B:

EU(a,/3;y) = <a,j3;y|A|a,/3;y),
n«(a,j8;r) = (a,j8;y|B|a,j8;y).

(2)

Both players try to optimize their strategy to gain the maximal payoff, and the result is
the quantum version of the Nash equilibrium, where we have (o:,j3) = (a*,j3*) in the
strategy space, at which point the payoffs separately attain the maxima as

«anA(a,/3*;r)l«x* =o, fynB(a*,j3;y)|^ =o, (3)

under arbitrary variations in a and j3. We express the individual strategies in terms of
orthonormal basis strategies {\i}}, i = 1,...,« which we regard as common toA and B.

«>/l =L«i|i)yU IP)fl=XA'l*)fl> (4)

with complex numbers a,, /3/ normalized as L, |«j|2 = £* |/3j|2 = 1. We introduce the
swap operator S by

S\iJ) = \j,i) (5)

for the states \ij) - \i)A \j)B, and then S\a,(3) = |j3,a) for general separable states
|«, j3) = \a)A |/3)B results. We further introduce operators C and T by

C\iJ)=\I,J), T\i,j)=\],T), (6)
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where the bar represents the complimentary choice; i - (n - 1) - i. The operator C
is the simultaneous renaming (conversion) of strategy for two players, and T is the
combination T = CS. These operators {S,C, T} commute among themselves and satisfy

S2=C2=T2=/,

T=SC,S=CT,C=TS, (7)

where / is the identity operator. They form the dihedral group Di.
By defining the correlated payoff operators

sf(y) =J*{y)AJ{y), ®(i) =j\y)BJ{y), (8)

wehave Ha(oc, j3; y) - {a, j3 1 srf{y) \cc, j3). We consider diagonal payoff matrices whose
elements are given by

(i',/ A\iJ) = AijSfiSfj,

B\i,j) = BtjSjfiSfj.

Observe that we have
nA(a,j5;0) = ^iAy7i/,

(9)

(10)
t-J

n*(a,j3;0) = £*,Byy;j
hJ

where xt - \a,i\2 and yj = |j3y|2 are the probability of choosing the strategies \i)A and
j)B respectively. This means that, at 7 - 0, our quantum game reduces to the classical
game with the payoff matrix Ay under mixed strategies.

ALTRUISTIC CONTENTS AND QUANTUM INTERFERENCES IN
QUANTUM GAMES

Let us now restrict ourselves to two strategy games n - 2. The unitary operator J{y) then
admits the form,

J(r) eiyiS/2eiy2T/2 (ll)

where y- (y\ , 72) are real parameters. Note that, on account of the relation S-\- T -C - I
valid for n - 2, only two operators are independent in the set {S,C, T}. The correlated
payoff operator A(7) is split into two terms

^(y) = ^c{y) ^^[\y) (12)

where <c/pc is the "pseudo classical" term and srfm is the "interference" term given,
respectively, by

^Pc(7) = cos2^A+ (cos2^ -cos2^)SAS±sin2^CAC,

^m{y) = Isin7,(AS-SA)+-siny2(AT-TA). (13)

256



rator C
nis the
I satisfy

(V)

(8)

s whose

(9)

(10)

\i)A and
classical

:es in

(y) then

(ll)

yrrel ated

(12)

n given,

(13)

Correspondingly, the full payoff is also split into two contributions from «e/pc and
srfmas n,4 = n^c+n^1. To evaluate the payoff, we may choose both «o and /3o to
be real without loss of generality, and adopt the notaions (oCo,(X)) = (ao,a\el%) and
(jSb,ft) = (boyheto). The outcome is

iff(«.J»;r> = Efl?*K!M. (14)
h]

ny(a,j8;7) = -aoflifco*i[G+(y)sin(§ +^) +G_(r)sin(| -3)],

with ^.f(7) - (i,;|^c(y) \hJ) and

G+(y) = (Aoo-Au)siny2, (15)
G_(7) = (Aoi -Aio)sinyi.

A completely parallel expressions are obtained for the payoff matrix B{y) and the
payoff Ilfl(a, ]3; y) for the player B.

Above split of the payoff shows that the quantum game consists of two ingredients.
The first is the pseudo classical ingredient associated with £/pc (y) , whose form indicates
that we are, in effect, simultaneously playing three different classical games, i.e., the
original classical game A, and two types of "converted" games, specified by diagonal
matrices SAS and CAC with the mixture specified by given yi and 72. Regarding y as
tunable parameters, we see that the quantum game contains a.family of classical games
that includes the original game. The second ingredient of the quantum game is the purely
quantum component <fi/in(y), which occurs only when both of the two players adopt
quantum strategies with aoa\ bob\ 7^ 0 and non-vanishing phases £ and %. The structure
of IT41 suggests that this interference term cannot be simulated by a classical game and
hence represents the bonafide quantum aspect.

Wefurther look into the pseudo classical family to uncover its physical content. To
that end, we assume that one of the coordinator's parameters, yi is zero. Wehave

^Pc(7i) - cos2yA+sin2^-SAS

^Pc(ri) = cos2-B+sin2-SBS

(16)

The meaning of these payoff matrices becomes evident by considering a symmetric
game, which is defined by requiring that the payoffs are symmetric for two players,
namely TIa(a, /3; 7) = II5(j3, a; 7). The game appears identical to both players A and B.
In this sense, a symmetric game is fair to both parties. It is easy to see that the condition
of symmetry translates into the requirement B = SAS. We then have, for a symmetric
game,

^Pc(ft) = cos2^-A+sin2^B
Jit J*

m^{yx) = cos2^-5+sin2^-A.

(17)

This means that the pseudo classical game specified by modified rule srf{j\ ) and 3§{y\ )
can be interpreted as a game played with the mixture of altruism, or players' taking into
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account of other party's interest along with their own self-interest [9, 10]. The degree
of mixture of altruism is controlled by the correlation parameter j\. It is a well known
fact that altruistic behavior is widespread among primates that lead social life. It is also
well known that the introduction of altruism "solves" such long-standing problems as
prisoner's dilemma, to which attempts for solution within conventional game theories
based solely on narrow egoistic self-interest has been notoriously difficult [1 1 , 12].

If we fix the first correlation parameter to be j\ ~ ^/2, and assume T-symmetric game
B - TAT,we arrive at a parallel relation to (17), thereby proving the fact that pseudo
classical family is essentially made up of classical games with altruistic modification
specified by the coordinator's parameter y.

For detailed solutions of Nash equilibria with exhaustive classification according to
the relative value of the payoff parameters, readers are referred to [8, 13, 5].

BELL EXPERIMENT AS A QUANTUM GAME

What wehave done up to now amounts to "quantizing" classical games. With the advent
of nanotechnology, however, it is now possible to actually set up a game with quantum
particles as a laboratory experiment that has no classical analogue. For such quantum
games, we have to allow arbitrary Hermitian payoff operators A and B, removing the
restriction to diagonal ones, (9). Without the diagonal condition, however, it turns out
that the parametrization of Hilbert space J% x Jfs with the correlation operator (1 1) is
not completely valid. (It leaves certain relative phases between basis states fixed, which,
for the case of diagonal payoff operators, does no harm.) Instead, we resort to the scheme
devised by Cheon, Ichikawa and Tsutsui [14] that utilizes Schmidt decomposition

|>P(a,J3;n)) = y(a)®«7(j3) |«>(Ti)>,

with "initial" correlated state

|O(T?)> =co8^|00)+^8in^-|n>,

(18)

(19)

and individual 51/(2) rotations U(a) and f/(/3) that are controlled respectively by player
A and B. For definiteness we write

-g- ŝin^
a

~n~ ^j\jo Tr

/ ,-«,-,o #£

rr/.A / WO -FT ~C SlU"^

U{(X)= [ -: Bn
\ e- s in- cos

(20)

The Schmidt state |\P(a,/J;T])) covers entire Hilbert space J#X x <#%å Note that the
coordinator's parameters r\\ and?]2 have definite meaning as the measure of size and
phase of two-particle entanglement.

As an example of such quantum game, let us consider payoff operators

A - B=V2(ox<8)crx+cr^<g>az). (21)

This is nothing other than the measurement operator for Bell's experiment, in which the
projection of two spin 1/2 particles specified by the state (1 8) are measured separately.
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Here we identify |0) and 1 1) as "up" and "down" states of spin 1/2 along z axis, namely

az|0)=|0>, a,|l)=-|l). (22)

The spin projection of the first particle is measured either along positive x axis (whose
value, we call P\) or along positive z axis (whose value is Pi) with random alternation.
The spin projection of the second particle is measured either along the line 45 degrees
between positive x and z axes (Qi), or along the line 45 degrees between negative x
and positive z axes (Q2), again in random alternation. Suppose that both players are
interested in maximizing the quantity

n = P]Q\ -P2Q2. (23)

Wecan easily show that II is given by the common payofftoA and B given by

n=EU(a,/8,Ti) = nB(a,i5,Tj) = 0P(o,j8;ij)|A|*(a,j8;T|)>. (24)

The game nowbecomes a one of quantum coordination between players A and B who
both try to increase the commonpayoff II by respectively controlling the directions of
spins with U(a) and £/(/?). Considering the relation

{^(a^^XA l^Ca./S^)) = (*(ij)| (l/t(a) ®J7t(i8)AI7(a) ®«705)) |*(i7)>. (25)

we can also restate the game as two players, receiving the correlated two particle state
|<J>(tj)), trying to maximize the common payoff n by rotating the directions of spin
projection measurement: The player A applies a common rotation U(a) to the directions
Pi and P%and the playerB applies another common£/(j3) to Q\ and Qi-

For a fixed set of entanglement parameters (771, 772), a straightforward calculation
yields the Nash equilibrium that is specified by

ea=9p =arbitrary, (p* =cp*=0,

for which, the Nash payoff is given by

n*(m^2) = V^(l +sinTji cosT/2).

(26)

(27)

For particles with no entanglement, 771 - 0, we obtain II* = y/2, which is the known
maximumfor two uncorrelated spins. For particles with maximum entanglement, r\ \ -
k/2 and phase 772 - 0, we obtain the payoffII* = \/8, which is exactly on the Tsirelson's
bound [15].

This reformulation of Bell's experiment should give a hint for the way toward more
general game-theoretic reformulation of quantum information processing.
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