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Abstract— In this paper, we show that a set of multicarrier
code-division multiple access (MC-CDMA) signals using a set of
discrete prolate spheroidal sequences achieves 95% of the maxi-
mum spectral efficiency at the out-of-band energy of 0.1% and
the bandwidth-duration product of 45.25 with an orthogonalizing
truncation. It is shown that the density ρ of carriers plays an
important role in accurately estimating the out-of-band energy
of the signals based on the corresponding eigenvalues and in
achieving a small out-of-band energy. We also show that ρ should
be chosen such that ρ ≥ 4 or ρ ≥ 8. To perform numerically
stable eigenanalysis, we employ the technique of singular-value
decomposition.

I. INTRODUCTION

In the design of the spectrally efficient signals, it is neces-
sary to efficiently pack the signals into a given time-frequency
plane. The (sinx)/x-shaped Nyquist pulse has a rectangular
spectrum that fully occupies a unit frequency slot and provides
the maximum spectral efficiency of 2 symbols/s/Hz, the so-
called Nyquist efficiency, without any intersymbol interference
(ISI) or out-of-band energy. Although it is highly spectrally
efficient, the problem for practical use is that such a pulse has
eternal, large sidelobes that result in a large amount of energy
being spilled out of a given unit time slot. To reduce the dura-
tion of the sidelobes without the occurrence of ISI, pulses that
have raised-cosine spectra have been commonly considered at
the expense of an excess bandwidth [1]. Recently, a “better
than” Nyquist pulse that reduces the magnitudes of the largest
two sidelobes of pulses having the raised-cosine spectra was
proposed [2]. The wavelets have also been considered for use
as efficient pulses, since they inherently have the properties
of time-frequency localization [3]. For finite-duration pulses,
the prolate spheroidal wave function (PSWF) is known to be
an optimum pulse that minimizes the out-of-band energy for
a given length of time slot [4]–[7].

Another approach for designing efficient finite-duration
signals is to employ a set of signals. Orthogonal frequency-
division multiplexing (OFDM) signals [8] are known to be a
nearly optimum set of orthogonal signals that can approxi-
mately achieve the Nyquist efficiency for a large number of
carriers. Each signal in a set of OFDM (pure OFDM) signals
has the (sinx)/x-form spectra and hence, has large sidelobes
in the frequency domain; however, most of them enter the

frequency slots of other carriers in the set, whereby a small
total out-of-band energy can be achieved.

Multicarrier code-division multiple access (MC-CDMA)
signals can also be a nearly optimum set of orthogonal signals
by appropriately choosing code sequences to achieve a small
total out-of-band energy. Discrete prolate spheroidal sequences
(DPSSs) [7] have been discussed for use with MC-CDMA [9],
[10]. In this paper, we discuss the spectral efficiency for a set
of finite-duration MC-CDMA signals using the DPSSs and
show that an orthogonalizing truncation provides us with a set
of signals that achieve higher spectral efficiency than that of
the set of OFDM signals for a given identical value of the
bandwidth-duration product.

II. MODEL OF TRUNCATED MC-CDMA SIGNALS

A. Truncated MC-CDMA Signals

Let us begin with formulating the shapes of finite-duration
MC-CDMA signals using L complex carriers (complex ex-
ponentials) with frequencies (l − 1

2 )/T0[Hz] (l = 1, 2, ..., L).
The kth signal c(t; ck, T ) (k = 1, 2, ...,K) with duration T [s]
(< T0) is given by

c(t; ck, T ) = g(t;T )
L∑

l=1

ck,l e
j 2π

T0
(l− 1

2 )t, (1)

where j =
√
−1, g(t;T ) is a rectangular function for the trun-

cation defined as g(t;T ) = {1 (0 < t < T ), 0 (otherwise)},
and ck (= [ck,1 ck,2 ... ck,L]T ; the superscript T denotes the
transpose) is a column vector that contains the code sequence
ck,l (l = 1, 2, ..., L) for the kth signal. The signals c(t; ck, T )
(k = 1, 2, ...,K) form a set of size K.

The kth signal, given by (1), is modulated by the complex
message symbol bk, which has two message samples in the
real and imaginary parts [1] to be transmitted. Let xk(t;T ) be
the kth modulated signal xk(t;T ) = bk c(t; ck, T ). Therefore,
a multiplexed signal y(t) can be represented as

y(t) =
K∑

k=1

xk(t;T ) =
K∑

k=1

bk c(t; ck, T ). (2)



For the following discussions, we define a quantity ρ, called
the density of carriers, as the number of complex carriers
within a unit bandwidth 1/T , that is,

ρ = T0/T. (3)

B. Orthogonalization of the Set

To design an orthogonal set of the signals, we first dis-
cuss the cross-correlation ΦT (ck, ck′) between the signals
c(t; ck, T ) and c(t; ck′ , T ). ΦT (ck, ck′) is defined as

ΦT (ck, ck′) =
∫ T

0

c∗(t; ck, T )c(t; ck′ , T )dt , (4)

where the superscript ∗ denotes the complex conjugate.
Substituting (1) into (4) yields

ΦT (ck, ck′)

=
∫ T

0

( L∑
l=1

c∗k,l e
−j 2π

T0
(l− 1

2 )t
)( L∑

m=1

ck′,m ej 2π
T0

(m− 1
2 )t

)
dt

= T0

L∑
l=1

L∑
m=1

c∗k,l rl,m ck′,m , (5)

where rl,m is the cross-correlation between the complex car-
riers fl(t;T ) = g(t;T ) 1√

T0
exp j 2π(l−1/2)

T0
t and fm(t;T ) =

g(t;T ) 1√
T0

exp j 2π(m−1/2)
T0

t, which is given by

rl,m =
∫ T

0

f∗
l (t;T )fm(t;T )dt

=

{
1/ρ (l = m)
1
ρ

sin((l−m)π/ρ)
(l−m)π/ρ e−j(l−m)π/ρ (l 6= m)

. (6)

Let Rρ be an L-by-L matrix, whose (l,m)th entry is rl,m,
such that

Rρ =
[
rl,m

]
. (7)

Since it is obvious from (6) that r∗l,m = rm,l, the matrix Rρ

is Hermitian; thus, the relation RH
ρ = Rρ holds, where the

superscript H denotes the Hermitian transpose (the transpose
combined with the complex conjugate).

By using the matrix Rρ and the code sequence ck, the cross-
correlation (5) can be rewritten as

ΦT (ck, ck′) = T0 cHk Rρ ck′ . (8)

The matrix Rρ in (8) can be decomposed into its eigen-
values λρ,i and corresponding eigenvectors vρ,i, which satisfy
Rρ vρ,i = λρ,ivρ,i (i = 1, 2, ...,K ′; K ′ is the rank of the
matrix Rρ, and K ′ ≤ L), such that

Rρ =
K′∑
i=1

λρ,i vρ,i v
H
ρ,i, (9)

where the eigenvalues λρ,i have values 0 ≤ λρ,i ≤ 1, and
the eigenvectors vρ,i (= [vρ,i,1 vρ,i,2 ... vρ,i,L]T ) have a unit
norm (i.e., ‖vρ,i‖ = (vH

ρ,i vρ,i)
1
2 = 1) and are orthogonal to

each other (i.e., vH
ρ,i vρ,i′ = {1 (i= i′), 0 (i 6= i′)}). To obtain

numerically stable results for the eigenanalysis of the matrix
Rρ, we employ the technique of singular-value decomposition
(see Appendix I). Without loss of generality, we assume that
the eigenvalues are numbered such that λρ,1 ≥ λρ,2 ≥ ... ≥
λρ,K′ .

Substituting (9) into (8), we have

ΦT (ck, ck′) = T0 cHk
( K′∑

i=1

λρ,i vρ,i v
H
ρ,i

)
ck′ . (10)

Therefore, by choosing the vector cρ,k, which is given by

cρ,k =
1√
λρ,k

vρ,k =⇒ ck, (11)

as the code sequence vector ck for the kth signal (k =
1, 2, ...,K; K ≤ K ′), and by substituting (11) into (10), we
have

ΦT (cρ,k, cρ,k′)

= T0
1√
λρ,k

vH
ρ,k

( K′∑
i=1

λρ,i vρ,i v
H
ρ,i

) 1√
λρ,k′

vρ,k′

=

{
T0 (k=k′)
0 (k 6=k′)

. (12)

Expression (12) indicates that the signals c(t; cρ,k, T ) (k =
1, 2, ...,K; K ≤ K ′) are orthogonal for the duration 0 < t <
T . We employ the set of vectors cρ,k as the code sequences
[10], which is a complex version of the set of DPSSs,1 and
discuss the signals transmitted in the duration 0 < t < T .

C. Symbol Detection

The message symbol bk that modulates the kth signal
c(t; cρ,k, T ) can easily be detected from the multiplexed signal
y(t) using the corresponding correlator (or equivalently, using
the matched filter that has the impulse response hk(τ) =
c∗(T − τ ; cρ,k, T )).

The kth correlator output zk(T ) at time t = T is given by

zk(T ) =
∫ T

0

c∗(t; cρ,k, T ) y(t) dt . (13)

Substituting (2) into (13), and using (12), we obtain

zk(T ) =
∫ T

0

c∗(t; cρ,k, T )
( K∑

k′=1

bk′ c(t; cρ,k′ , T )
)
dt

=
K∑

k′=1

bk′ ΦT (cρ,k, cρ,k′) = bk T0 . (14)

1For an L-by-L diagonal matrix D = diag{ej(1− 1
2 )π/ρ, ej(2− 1

2 )π/ρ,

..., ej(L− 1
2 )π/ρ} (D−1 = DH), the set of DPSSs is typically defined as

the real solution of the set of vectors dρ,k that satisfy (DRρ DH)dρ,k =
λρ,k dρ,k for distinct eigenvalues λρ,k [7]. It is easily verified that dρ,k

can be expressed as the form dρ,k = Dvρ,k; thus, vρ,k = DH dρ,k . To
produce the orthogonal set of signals defined in the duration −T/2 < t <
T/2, the vectors dρ,k can be employed as the code sequences regardless of
the real or complex solutions.



Note that the correlator (or matched filter) provides us with
an optimum method of detection that achieves the highest
signal-to-noise ratio (SNR) over additive white Gaussian noise
(AWGN) channels.

III. SPECTRAL EFFICIENCY

A. Out-of-Band Energy

A reliable value of out-of-band energy is required to accu-
rately evaluate the spectral efficiency of the set of truncated
MC-CDMA signals. Since the out-of-band energy E

(out)
k of

the signal xk(t;T ) can be obtained from the total energy
E

(total)
k minus the in-band energy E

(in)
k , we first discuss the

in-band energy E
(in)
k .

Here, we show that approximately 100λk[%] of the energy
of xk(t;T ) occupies the bandwidth W = L/T0, defined in the
frequency band B = [0, L/T0].

Let Xk(f ;T ) (= F [xk(t;T )]) be the Fourier transform of
xk(t;T ). Xk(f ;T ) is given by

Xk(f ;T ) =
∫ ∞

−∞
xk(t;T )e−j2πftdt

= bk

∫ T

0

c(t; cρ,k, T )e−j2πftdt

= bk T0

L∑
l=1

cρ,k,l r
∗
l (f), (15)

where r∗l (f) denotes

r∗l (f) =
1
T0

∫ T

0

e−j2πftej 2π
T0

(l− 1
2 )tdt

=
1
ρ

sin
(
(T0f − l + 1

2 )π/ρ
)

(T0f − l + 1
2 )π/ρ

e−j(T0f−l+ 1
2 )π/ρ. (16)

The in-band energy E
(in)
k of xk(t;T ) can be evaluated using

(15) as follows:

E
(in)
k =

∫
B

|Xk(f ;T )|2df

= |bk|2 T 2
0

∫ L/T0

0

∣∣∣ L∑
l=1

cρ,k,l r
∗
l (f)

∣∣∣2df. (17)

Now, we approximate the integral in (17) by a discrete
summation of the areas of L rectangles with the frequency
interval ∆f = 1/T0, that is,

Ẽ
(in)
k = |bk|2 T 2

0

L∑
m=1

∣∣∣ L∑
l=1

cρ,k,l r∗l (f)
∣∣
f=

m−1/2
T0

∣∣∣2∆f . (18)

Expression (18) can be a good approximation for obtaining
the exact values of E

(in)
k when ∆f (= 1/T0) → 0, or ρ (=

T0/T ) → ∞ for a certain fixed value of the duration T of the
signals, and the approximation is independent of the length L
of the code sequence. It will be shown that (18) can be a good
approximation only when ρ ≥ 4 or ρ ≥ 8.

We now determine the approximated quantity Ẽ
(in)
k of the

in-band energy.

Note that r∗l (f), given by (16), coincides with the complex
conjugate r∗l,m of rl,m, given by (6), at the frequencies f =
(m − 1

2 )/T0 (m = 1, 2, ..., L).

r∗l (f)
∣∣
f=

m−1/2
T0

= r∗l,m (19)

Therefore, the following relation holds:
L∑

l=1

cρ,k,l r
∗
l (f)

∣∣
f=

m−1/2
T0

=
L∑

l=1

cρ,k,l r
∗
l,m

= rHm cρ,k, (20)

where rm denotes the mth column vector of the Hermitian
matrix Rρ (= [r1 r2 ... rm ... rL];RH

ρ = Rρ).
Substituting (20) into (18) yields

Ẽ
(in)
k = |bk|2 T 2

0

L∑
m=1

∣∣∣rHm cρ,k

∣∣∣2∆f

= |bk|2 T 2
0

∥∥RH
ρ cρ,k

∥∥2 ∆f , (21)

where ‖ · ‖ denotes the norm of the enclosed vector.
Finally, upon substituting (9) for Rρ and (11) for cρ,k into

expression (21), we arrive at the desired approximation Ẽ
(in)
k

for the in-band energy of the signal xk(t;T ).

Ẽ
(in)
k = |bk|2 T 2

0

∥∥∥( K′∑
i=1

λρ,i vρ,i v
H
ρ,i

)
cρ,k

∥∥∥2

∆f

= |bk|2 T 2
0

∥∥∥√
λρ,k vρ,k

∥∥∥2

∆f

= |bk|2 T0 λρ,k (22)

According to Parseval’s theorem, the total energy E
(total)
k

of Xk(f ;T ) in the frequency domain is identical to that of
xk(t;T ) in the time domain, that is,

E
(total)
k =

∫ ∞

−∞
|Xk(f ;T )|2df

=
∫ T

0

|xk(t;T )|2dt

= |bk|2
∫ T

0

c∗(t; cρ,k, T ) c(t; cρ,k, T )dt

= |bk|2ΦT (cρ,k, cρ,k). (23)

Using (12), we obtain

E
(total)
k = |bk|2 T0. (24)

The out-of-band energy E
(out)
k is obtained using (22) and

(24) as

E
(out)
k = E

(total)
k − E

(in)
k (25)

≈ E
(total)
k − Ẽ

(in)
k = |bk|2 T0 (1 − λρ,k). (26)

Thus, it is seen from (24) to (26) that approximately 100(1−
λρ,k)[%] of the energy of the signal xk(t;T ) exists outside the
given frequency band B.

Figure 1 shows the relationship between the numerically
evaluated exact values of the out-of-band energies and those
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Fig. 1. Relationship between exact value of the out-of-band energy of
xk(t; T ) and eigenvalue approximation based on (26) (L/ρ = 64 (= WT )).

obtained using approximation (26). The solid line shows the
approximation based on (26), and dotted lines show the values
obtained from (17), (24), and (25).

As can be observed in Fig. 1, the approximation is valid
only for ρ ≥ 4 or more precisely, for ρ ≥ 8. In addition,
it is important to note that we must choose a large value of
density ρ such that ρ ≥ 4 or ρ ≥ 8 to produce the set of
signals xk(t;T ) that achieve a smaller out-of-band energy.

B. Spectral Efficiency

Since each symbol bk takes a complex value containing two
message samples in its real and imaginary parts, the multi-
plexed signal y(t)(=

∑K
k=1 xk(t;T ) =

∑K
k=1 bk c(t; cρ,k, T ))

of size K conveys 2K samples during T [s] using the band-
width W = L/T0 = L/(ρT )[Hz]. Therefore, the spectral
efficiency η [samples/s/Hz] of y(t) is given by

η =
2K 1

T

W
=

2K

WT

(
=

2K

L/ρ

)
. (27)

To determine the size K of the set of the signals, we
consider the out-of-band energy for the multiplexed signal
y(t). For simplicity, we assume that E[b∗k bk′ ] = {E (k =
k′), 0 (k 6= k′)} (E[·] denotes the ensemble average). For
this case, the average out-of-band energy E

(out)
y for the mul-

tiplexed signal y(t) can be evaluated using the approximation
in (26) as

E (out)
y = E

[ K∑
k=1

E
(out)
k

]
=

K∑
k=1

E
[
E

(total)
k − E

(in)
k

]
≈

K∑
k=1

E[|bk|2]T0(1 − λρ,k)

= K E T0 (1 − λ̄ρ), (28)

where λ̄ρ is the average of the eigenvalues λρ,k, defined as

λ̄ρ =
1
K

K∑
k=1

λρ,k . (29)
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On the other hand, using (24), the total energy E
(total)
y of

y(t) is

E (total)
y = E

[ K∑
k=1

E
(total)
k

]
=

K∑
k=1

E[|bk|2]T0

= K E T0. (30)

Thus, from (28) and (30), the out-of-band energy of y(t) is
100E

(out)
y /E

(total)
y ≈ 100(1−λ̄ρ)[%]. Note that we can obtain

reliable values of the average out-of-band energy E
(out)
y by

calculating λ̄ρ, given by (29), only when we choose a large
value of density ρ for the set of signals.

Let K100p be the maximum size of K for which y(t)
satisfies 100(1 − λ̄ρ) < 100p[%], that is,

1− 1
K100p

K100p∑
k=1

λρ,k < p ≤ 1− 1
K100p+1

K100p+1∑
k=1

λρ,k. (31)

It should be pointed out that K100p depends not only on
the value of 100p but also on the values of L and ρ. We
employ K100p as the size K in (27) for the evaluation of
the spectral efficiency of y(t). Results are shown in Fig. 2
in comparison with those of OFDM (pure OFDM) signals,
for which 99.0% bandwidth (W99.0%) and 99.9% bandwidth
(W99.9%) are considered.

As can be observed in Fig. 2, the spectral efficiency in-
creases with the bandwidth-duration product WT . For the case
of 100(1 − λ̄ρ) < 0.1%, the multiplexed signal y(t) achieves
η ≈ 1.90, which corresponds to 95% of the maximum spectral
efficiency of the Nyquist pulse (sin t)/t, at WT = 45.25;2

whereas the set of OFDM signals requires WT = 373 for the
out-of-band energy of 0.1% (the curve for W99.9%) to achieve
η ≈ 1.90.

The energy density spectra of y(t) for different sizes of K
are shown in Fig. 3 for (L|ρ) = (362|8). It is observed that

2K0.1% = 43 was obtained at (L|ρ) = (362|8), which corresponds to
WT = 45.25. For this case, the approximate value of the average out-of-
band energy was 100(1 − λ̄ρ) = 0.057%, while the numerically evaluated
exact value was 0.059%. Both of these values are less than the prescribed
value of 100p = 0.1%.
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the out-of-band characteristic of y(t) can be controlled by the
size K.

IV. CONCLUSION

The spectral efficiency of an orthogonal set of truncated
MC-CDMA signals using DPSSs has been discussed. It has
been shown that the set of signals can be more efficiently
packed into a limited space of the time-frequency plane than
the set of OFDM signals.

APPENDIX I
EIGENANALYSIS OF MATRIX Rρ

The purpose of our eigenanalysis is to obtain the eigenvalues
λρ,i and corresponding eigenvectors vρ,i (i = 1, 2, ...,K ′)
such that expression (9) holds.

Let fρ,l and fρ,m be column vectors

fρ,l = [fρ,l,1 fρ,l,2 ... fρ,l,MT
]T

fρ,m = [fρ,m,1 fρ,m,2 ... fρ,m,MT ]T

that consist of discrete-time samples fρ,l,n and fρ,m,n (n =
1, 2, ...,MT ) of the complex carriers fl(t;T ) and fm(t;T ),
defined as 3

fρ,l,n =
1√

ρMT
exp j

2π(l − 1/2)(n − 1)
ρMT

,

fρ,m,n =
1√

ρMT
exp j

2π(m − 1/2)(n − 1)
ρMT

.

The (l,m)th entry rl,m, given by (6), of the matrix Rρ can
be represented using fρ,l and fρ,m as rl,m ≈ fHρ,l fρ,m (, r̂l,m).

Let us define a new matrix F̂ρ = [fρ,1 fρ,2 ... fρ,L]. Rρ

can be represented using F̂ρ as Rρ ≈ F̂H
ρ F̂ρ (, R̂ρ).

3We employ MT = 4L for the numerical discussion throughout the paper.

In accordance with the technique of singular-value decom-
position [11], F̂ρ is decomposed into

F̂ρ = Ûρ Λ̂
1
2
ρ V̂H

ρ , (32)

where Λ̂
1
2
ρ = diag

{
λ̂

1
2
ρ,1, λ̂

1
2
ρ,2, ... , λ̂

1
2

ρ,K̂′

}
is a K̂ ′-by-K̂ ′

diagonal matrix that contains K̂ ′ distinct singular values λ̂
1
2
ρ,i

(i = 1, 2, ..., K̂ ′; K̂ ′ is the rank of F̂ρ and rank(F̂ρ) =
rank(R̂ρ) ≤ min(L,MT )), Ûρ = [ûρ,1 ûρ,2 ... ûρ,K̂′ ] and
V̂ρ = [v̂ρ,1 v̂ρ,2 ... v̂ρ,K̂′ ] are an MT -by-K̂ ′ and an L-by-
K̂ ′ matrix, respectively, where ûH

ρ,i ûρ,i′ = {1 (i = i′), 0 (i 6=
i′)} and v̂H

ρ,i v̂ρ,i′ = {1 (i = i′), 0 (i 6= i′)} hold.
Using (32) and the relations ÛH

ρ Ûρ = 1K̂′×K̂′ (K̂ ′-by-K̂ ′

identity matrix) and Λ̂
1
2
ρ Λ̂

1
2
ρ = Λ̂ρ, R̂ρ can be expressed as

R̂ρ (= F̂H
ρ F̂ρ) = (Ûρ Λ̂

1
2
ρ V̂H

ρ )H (Ûρ Λ̂
1
2
ρ V̂H

ρ )

= V̂ρΛ̂
1
2
ρ ÛH

ρ ÛρΛ̂
1
2
ρ V̂H

ρ = V̂ρ Λ̂ρ V̂H
ρ

=
K̂′∑
i=1

λ̂ρ,i v̂ρ,i v̂
H
ρ,i. (33)

Expression (33) corresponds to the result of the objective
eigenanalysis (9). Thus, the eigenvalues λ̂ρ,i and correspond-
ing eigenvectors v̂ρ,i of R̂ρ can be obtained by the singular-
value decomposition of matrix F̂ρ.

ACKNOWLEDGMENT

This work was supported in part by a Grant-in-Aid for
Young Scientists (B19760271) from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT) in Japan.

REFERENCES

[1] J. G. Proakis, Digital Communications (3rd ed.), McGraw-Hill, New
York, 1995.

[2] N. C. Beaulieu,, C. C. Tan, and M. O. Damen, “A “better than” Nyquist
pulse,” IEEE Commun. Lett., vol.5, no.9, pp.367-368, Sept. 2001.

[3] P. P. Gandhi, S. S. Rao, and R. S. Pappu, “Wavelets for waveform
coding of digital symbols,” IEEE Trans. Signal Processing, vol.45, no.9,
pp.2387-2390, Sept. 1997.

[4] J. H. H. Chalk, “The optimum pulse-shape for pulse communication,”
Proc. IEE, Radio and Communication Engineering, vol.87, pp.88-92,
1950.

[5] D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier
analysis and uncertainty – I,” Bell Syst. Tech. J., vol.40, pp.43-63, Jan.
1961.

[6] H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions,
Fourier analysis and uncertainty – II,” Bell Syst. Tech. J., vol.40, pp.65-
84, Jan. 1961.

[7] D. Slepian, “Prolate spheroidal wave functions, Fourier analysis and
uncertainty – V: The discrete case,” Bell Syst. Tech. J., vol.57, no.5,
pp.1371-1430, May-June 1978.

[8] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communi-
cations, Artech House, 2000.

[9] I. Raos, S. Zazo, and J. M. Paez-Berrallo, “Reduced interference MC-
CDMA system using discrete prolate codes,” IEEE ICASSP ’02, vol.3,
pp.2597-2600, May 2002.

[10] I. Raos, S. Zazo, and F. Bader, “Prolate spheroidal functions: A general
framework for MC-CDMA waveforms without time redundancy,” IEEE
PIMRC 2002, vol.5, pp.2342-2346, Sept. 2002.

[11] S. Haykin, Adaptive Filter Theory (3rd ed.), Prentice Hall, 1996.


