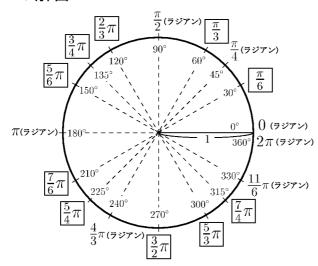
高知工科大学 基礎数学ワークブック

(2002年度版)


Series A

No. 3

解答

< 1ページ. 弧度法 2 >

問1の解答

問2の解答

- (1) 3π
- (2) $-\frac{3}{2}\pi$ (3) $\frac{7}{2}\pi$
- (4) $-\frac{9}{4}\pi$ (5) $\frac{25}{6}\pi$ (6) $-\frac{19}{4}\pi$

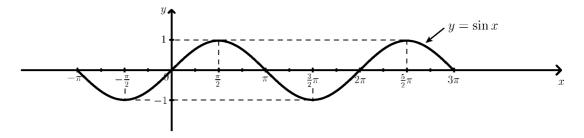
- $(1) \quad \ell = 2\pi r$
- (2) $S = \pi r^2$

< 2ページ. 弧度法 2 >

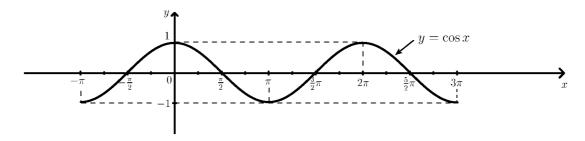
問1の解答

度数法	45°	60°	90°	120°	180°	360°
弧度法 θ	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2}{3}\pi$	π	2π
弧の長さℓ	$\frac{1}{4}\pi r$	$\frac{\pi}{3}r$	$\frac{\pi}{2}r$	$\frac{2}{3}\pi r$	πr	$2\pi r$
面積 S	$\frac{\pi}{8}r^2$	$\frac{\pi}{6}r^2$	$\frac{1}{4}\pi r^2$	$\frac{\pi}{3}r^2$	$\frac{\pi}{2}r^2$	πr^2

$$\ell = \theta r$$

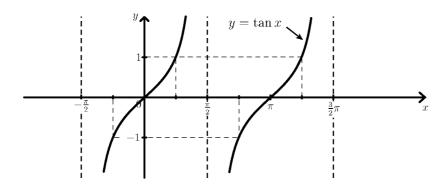

$$S = \frac{1}{2}\theta r^2$$

< 3ページ.三角関数のグラフ >

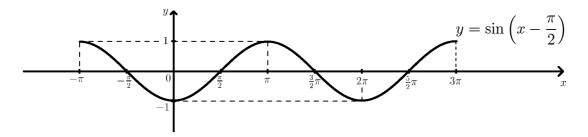

問の解答

\int_{x}	度数法	–180°	-135°	– 90°	– 45°	0°	45°	90°	135°	180°	225°	270°	315°	360°	405°	450°	495°	540°
	弧度法	$-\pi$	$-\frac{3}{4}\pi$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3}{4}\pi$	π	$\frac{5}{4}\pi$	$\frac{3}{2}\pi$	$\frac{7}{4}\pi$	2π	$\frac{9}{4}\pi$	$\frac{5}{2}\pi$	$\frac{11}{4}\pi$	3π
S	$\sin x$	0	$-\frac{\sqrt{2}}{2}$	-1	$-\frac{\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1	$-\frac{\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0
	$\cos x$	- 1	$-\frac{\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1	$-\frac{\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1

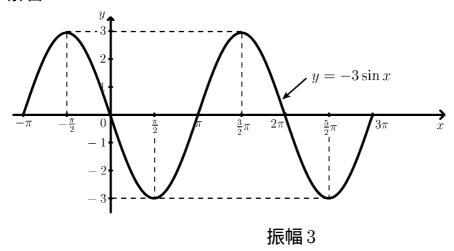
$(1) y = \sin x$



$(2) y = \cos x$

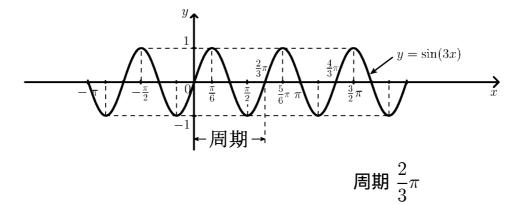

r	度数法	-90°	-60°	-45°	-30°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°
	弧度法	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π	$\frac{7}{6}\pi$	$\frac{5}{4}\pi$	$\frac{4}{3}\pi$	$\frac{3}{2}\pi$
	$\tan x$	X	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	\times	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	X

(3) $y = \tan x$



< 4ページ.正弦波 1 >

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π	$\frac{5}{2}\pi$	3π
$\sin x$	0	-1	0	1	0	-1	0	1	0
$\sin\left(x-\frac{\pi}{2}\right)$	1	0	-1	0	1	0	-1	0	1



< 5ページ.正弦波 2 >

< 6ページ.正弦波 3 >

x	$-\frac{2}{3}\pi$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2}{3}\pi$	$\frac{5}{6}\pi$	π	$\frac{7}{6}\pi$	$\frac{4}{3}\pi$
3x	-2π	$-\frac{3}{2}\pi$	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π	$\frac{5}{2}\pi$	3π	$\frac{7}{2}\pi$	4π
$\sin(3x)$	0	1	0	-1	0	1	0	-1	0	1	0	-1	0

< 7ページ.1次関数のグラフ >

問1の解答

$$y = 2x + 1$$
$$y = \frac{2}{3}x - 6$$
$$y = -\frac{1}{3}x + 4$$

問2の解答

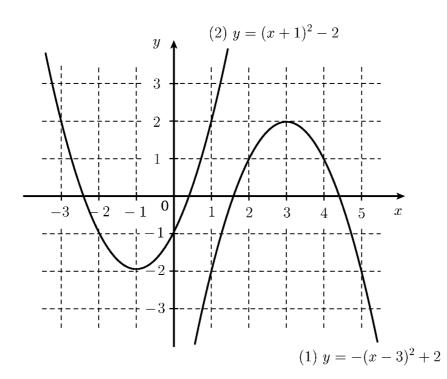
$$y = a(x - x_0) + y_0$$

(1) 傾き =
$$\frac{y_1 - y_0}{x_1 - x_0}$$

(2)
$$y = \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) + y_0$$

< 8ページ.2次関数のグラフ 1 >

$$(1) y = -(x-3)^2 + 2$$

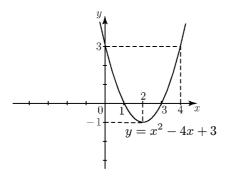

x	1	2	3	4	5
y	-2	1	2	1	-2

頂点 (3,2) ,軸 x=3

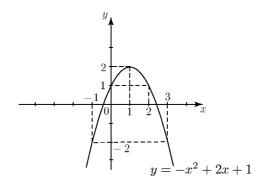
$$(2) y = (x+1)^2 - 2$$

x	-3	-2	-1	0	1
y	2	-1	-2	-1	2

頂点 (-1,-2) , 軸 x=-1



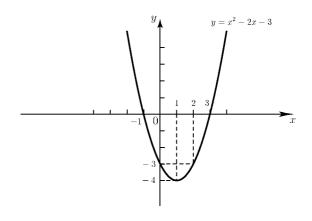
< 9ページ.2次関数のグラフ 2 >


問1の解答

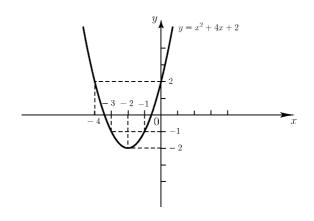
(右辺)=
$$a\left(x+rac{b}{2a}
ight)^2+c-rac{b^2}{4a}=a\left(x^2+rac{b}{a}x+rac{b^2}{4a^2}
ight)+c-rac{b^2}{4a}=ax^2+bx+c=(左辺)$$

(1)
$$y = x^2 - 4x + 3$$

= $(x-2)^2 - 1$
頂点 $(2,-1)$


(2)
$$y = -x^2 + 2x + 1$$

= $-(x-1)^2 + 2$
頂点 $(1,2)$


< 10ページ.2次関数のグラフ3>

問1の解答

(1)
$$x^2 - 2x - 3$$

= $(x - 1)^2 - 4$
頂点 $(1, -4)$
切片 -1 と 3

$$(2)$$
 $x^2 + 4x + 2$
$$= (x-2)^2 - 2$$
 頂点 $(-2, -2)$ 切片 $-2 - \sqrt{2} \succeq -2 + \sqrt{2}$

$$(1)$$
 $x < -1$ か又は $3 < x$

(1)
$$\underline{x < -1}$$
 か又は $3 < x$ (2) $\underline{-2 - \sqrt{2}} \le x \le -2 + \sqrt{2}$

< 11ページ. 関数の値 >

問1の解答

$$(1) f(0) = 5$$
 , $f(1) = 3$, $f(2) = 3$

$$(2) f(1) = -1$$
 , $f(2) = 4$, $f(3) = 21$

$$(3) f(-3) = 108$$
 , $f(0) = 0$, $f(3) = 54$

$$(4) f(0) = -1$$
 , $f(1) = 0$, $f(5) = 144$

$$(1) f(a) = a^3$$
 , $f(a+h) = (a+h)^3$

(2)
$$f(a) = a+1$$
 , $f(a+h) = (a+h)+1$

(3)
$$f(a) = 2a^2 - 5$$
 , $f(a+h) = 2(a+h)^2 - 5$

(4)
$$f(a) = a^2 + 3a$$
 , $f(a+h) = (a+h)^2 + 3(a+h)$

< 12ページ.接線 >

$$(1) \ \frac{(1+h)^2}{h} \ = \ 2+h$$

$$(2) 2 + 0.1 = 2.1$$

$$(3) \ 2 + 0.01 \ = \ 2.01$$

< 13ページ. 極限 1 >

問1の解答

傾き

$$(1) \lim_{h \to 0} (8+h) = 8$$

$$(2) \lim_{h \to 0} (1+h) = 1$$

< 14ページ. 極限 2 >

問1の解答

$$(1) \lim_{h \to 0} (10 + 5h) = 10$$

$$(2) \lim_{h \to 0} (12 + 3h) = 12$$

$$(3) \lim_{h \to 0} (3 + 3h + h^2) = 3$$

$$(4) \lim_{h\to 0} (27+9h+h^2) = 27$$

$$(1) \lim_{h \to 0} \frac{3h}{h} = 3$$

(2)
$$\lim_{h\to 0} (2a+h) = 2a$$

$$(3) \lim_{h \to 0} (3a^2 + 3ah + h^2) = 3a^2$$

< 15ページ. 接線の傾き 1 >

問1の解答

$$\lim_{h \to 0} \frac{(\frac{1}{2} + h)^2 - \frac{1}{4}}{h} = \lim_{h \to 0} (1 + h) = 1$$

よって点 $\mathrm{A}\left(rac{1}{2}\,,rac{1}{4}
ight)$ における放物線の傾きは1 である。

問2の解答

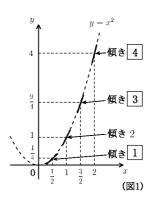
$$\lim_{h \to 0} \frac{(2+h)^2 - 4}{h} = \lim_{h \to 0} (4+h) = 4$$

よってA(2,4) における放物線の傾きは4である。

問3の解答

$$\lim_{h \to 0} \frac{(\frac{3}{2} + h)^2 - \frac{9}{4}}{h} = \lim_{h \to 0} (3 + h) = 3$$

よって点 $A\left(\frac{3}{2},\frac{9}{4}\right)$ における放物線の傾きは3 である。

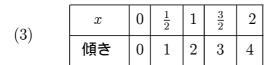

< 16ページ.接線の傾き 2 >

問1の解答

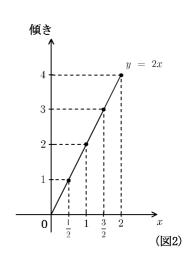
(1) $x = \frac{1}{2}$ のとき、傾き:1

 $x = \frac{3}{2}$ のとき、傾き:3

x = 2 のとき、傾き:4



$$(2) x = 2$$
のときの傾き $= \lim_{h \to 0} \frac{(2+h)^2 - 2^2}{h} = \boxed{4}$


$$x = \frac{3}{2}$$
のときの傾き $= \lim_{h \to 0} \frac{\left(\left[\frac{3}{2}\right] + h\right)^2 - \left(\left[\frac{3}{2}\right]\right)^2}{h} = \boxed{3}$

$$x = \frac{1}{2}$$
のときの傾き $= \lim_{h \to 0} \frac{\left(\left[\frac{1}{2}\right] + h\right)^2 - \left(\left[\frac{1}{2}\right]\right)^2}{h} = \boxed{4}$

$$x = 0$$
 のときの傾き $= \lim_{h \to 0} \frac{\left(\boxed{0} + h\right)^2 - \left(\boxed{0}\right)^2}{h} = \boxed{0}$

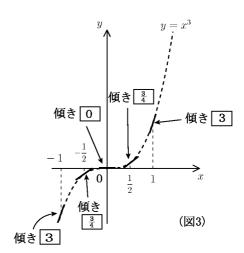
傾き =
$$2x$$

問2の解答

$$\lim_{h \to 0} \frac{(a+h)^2 - a^2}{h}$$
$$= 2a$$

- (1) x = -1 のときの傾き = -2
- (2) x = -2 のときの傾き = -4

< 17ページ. 接線の傾き 3 >


問1の解答

$$\lim_{h \to 0} \frac{(1+h)^3 - 1}{h} = 3$$

問2の解答

$$\lim_{h \to 0} \frac{(a+h)^3 - a^3}{h} = 3a^2$$

- (1) $\frac{3}{4}$
- (2) 0
- (3) $\frac{3}{4}$
- (4) 3

< 18ページ. 微分係数 1 >

問1の解答

(1)
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

問2の解答

x = a のときの接線の傾き

(1)
$$\lim_{h \to 0} \frac{(a+h)^4 - a^4}{h}$$

(2)
$$\lim_{h\to 0} \frac{4(a+h)^3 - 4a^3}{h}$$

(3)
$$\lim_{h\to 0} \frac{(a+h)^2 - 4(a+h) - a^2 + 4a}{h}$$

(4)
$$\lim_{h \to 0} \frac{(a+h)^3 + 3(a+h)^2 - a^3 - 3a^2}{h}$$

< 19ページ. 微分係数 2 >

(1)
$$\lim_{h \to 0} \frac{3(a+h)^2 - 3a^2}{h}$$
$$= \lim_{h \to 0} 3(2a+h) = 6a$$

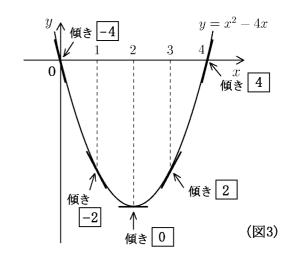
(2)
$$\lim_{h \to 0} \frac{(a+h)^2 - 4(a+b) - a^2 + 4a}{h}$$
$$= \lim_{h \to 0} (2a+h-4) = 2a-4$$

(3)
$$\lim_{h \to 0} \frac{(a+h)^3 + 3(a+h)^2 - a^3 - 3a^2}{h}$$
$$= \lim_{h \to 0} (3a^2 + 3ah + h^2 + 6a + 3a) = 3a^2 + 6a$$

< 20ページ. 微分係数 3 >

問1の解答

$$f'(a) = 2a - 4$$


$$f'(0) = -4$$

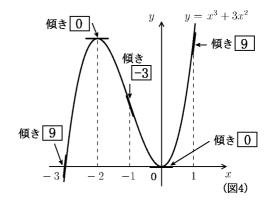
$$f'(1) = -2$$

$$f'(2) = 0$$

$$f'(3) = 2$$

$$f'(4) = 4$$

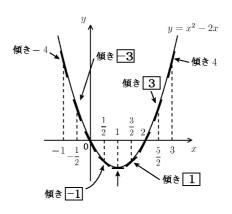
$$f'(a) = 3a^2 + 6a$$


$$f'(-3) = 27 - 18 = 9$$

$$f'(-2) = 12 - 12 = 0$$

$$f'(-1) = 3 - 6 = -3$$

$$f'(0) = 0$$


$$f'(1) = 3 + 6 = 9$$

< 21ページ. 導関数 1 >

問1の解答

- $(1) f'(-\frac{1}{2}) = -3$
- $(2) \ f'(\frac{1}{2}) = -1$
- $(3) f'(\frac{3}{2}) = 1$
- $(4) \quad f'\left(\frac{5}{2}\right) = 3$

$$(1) f(x) = x^2$$

(2)
$$f(x) = x^3$$

(1)
$$f(x) = x^2$$
 (2) $f(x) = x^3$ (3) $f(x) = 5x^2$

$$f'(a) = 2a$$

$$f'(a) = 2a \qquad \qquad f'(a) = 3a^2$$

$$f'(a) = 10a$$

$$f'(x) = 2x$$

$$f'(x) = 2x$$
 $f'(x) = 3x^2$ $f'(x) = 10x$

$$f'(x) = 10x$$

$$(4) f(x) = x^2 - 4x$$

$$(5) \ f(x) = x^3 + x^2$$

(4)
$$f(x) = x^2 - 4x$$
 (5) $f(x) = x^3 + x^2$ (6) $f(x) = x^3 + 3x^2$

$$f'(a) = 2a - 4$$

$$f'(a) = 3a^2 + 2a$$

$$f'(a) = 2a - 4$$
 $f'(a) = 3a^2 + 2a$ $f'(a) = 3a^2 + 6a$

$$f'(x) = 2x - 4$$

$$f'(x) = 3x^2 + 2x$$

$$f'(x) = 2x - 4$$
 $f'(x) = 3x^2 + 2x$ $f'(x) = 3x^2 + 6x$

< 22ページ. 導関数 2 >

問1の解答

- $(1) \quad f'(x) = 0$
- $(2) \quad f'(x) = 5$

- (1) (3)' = 0
- (2) (2)' = 0
- (3) (2x-1)' = 2
- (4) (5x-2)' = 5
- $(5) (5x^2)' = 10x$
- $(6) (x^2 2x)' = 2x 2$
- $(7) (x^2 4x)' = 2x 4$
- $(8) (x^3 + x^2)' = 3x^2 + 2x$
- $(9) (x^3 + 3x^2)' = 3x^2 + 6x$

< 23ページ. 導関数 3 >

$$(1) (x^3 + 2)' = 3x^2$$

$$(2) (3x^2 - 2x^3)' = 6x - 6x^2$$

$$(3) (x^2 - 3x + 2)' = 2x - 3$$

$$(4) (3x^3 - x^2 + 5x - 1)' = 9x^2 - 2x + 5$$

< 24ページ.パスカルの三角形 >

問1の解答

$$(1) \ (a+b)^4 \ = \boxed{1} \times a^4 + \boxed{4} \times a^3b + \boxed{6} \times a^2b^2 + \boxed{4} \times ab^3 + \boxed{1} \times b^4$$

$$(2) (a + b)^{5} = (a + b) \left(\boxed{1} \times a^{4} + \boxed{4} \times a^{3}b + \boxed{6} \times a^{2}b^{2} + \boxed{4} \times ab^{3} + \boxed{1} \times b^{4} \right)$$
$$= \boxed{1} \times a^{5} + \boxed{5} \times a^{4}b + \boxed{10} \times a^{3}b^{2} + \boxed{10} \times a^{2}b^{3} + \boxed{5} \times ab^{4} + \boxed{1} \times b^{5}$$

$$(a+b)^4 = \boxed{1} \times a^4 + \boxed{4} \times a^3b + \boxed{6} \times a^2b^2 + \boxed{4} \times ab^3 + \boxed{1} \times b^4 \dots \dots \dots \dots \boxed{1} \boxed{4} \boxed{6} \boxed{4} \boxed{1}$$
$$(a+b)^5 = \boxed{1} \times a^5 + \boxed{5} \times a^4b + \boxed{10} \times a^3b^2 + \boxed{10} \times a^2b^3 + \boxed{5} \times ab^4 + \boxed{1} \times b^5 \boxed{1} \boxed{5} \boxed{10} \boxed{10} \boxed{5} \boxed{1}$$

$$(a+b)^6 = \boxed{1} \times a^6 + \boxed{6} \times a^5b + \boxed{15} \times a^4b^2 + \boxed{20} \times a^3b^3 + \boxed{15} \times a^2b^4 + \boxed{6} \times ab^5 + \boxed{1} \times b^6$$

< 25ページ. 整関数の微分 1 >

$$(x^4)' = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^4 - x^4}{h}$$

$$= \lim_{h \to 0} \frac{4x^3h + 6x^2h^2 + 4xh^3 + h^4}{h}$$

$$= \lim_{h \to 0} (4x^3 + 6x^2h + 4xh^2 + h^3)$$

$$= 4x^{3}$$

< 26ページ. 整関数の微分 2 >

問1の解答

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^5 - x^5}{h}$$
$$= \lim_{h \to 0} (5x^4 + 10x^3h + 10x^2h^2 + 5xh^3 + h^4)$$
$$= 5x^4$$

問2の解答

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^6 - x^6}{h}$$
$$= \lim_{h \to 0} (6x^5 + 15x^4h + 20x^3h^2 + 15x^2h^3 + 6xh^4 + h^5)$$
$$= 6x^5$$

問3の解答

元の関数 $f(x)$	x^0	x^1	x^2	x^3	x^4	x^5	x^6
導関数 $f'(x)$	0	1	2x	$3x^2$	$4x^3$	$5x^4$	$6x^5$

問4の解答

$$(x^n)' = nx^{n-1}$$

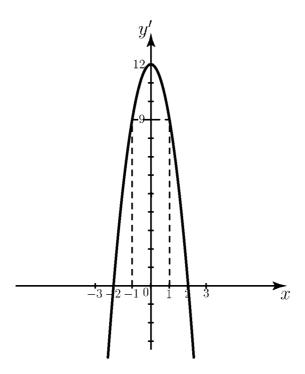
< 27ページ. 整関数の微分 3 >

- $(1) 1 3x^2$
- (2) $42x^5$
- (3) $40x^3 + 56x^6$
- (4) $30x^4 6x^2$
- (5) $15x^4 12x$
- (6) $28x^6 16x^3 + 18x 5$
- (7) 2x + 3
- (8) $4x^3 10x$

< 28ページ. 関数の増減 1 >

$$(1) y' = 2x-2$$
 ,頂点 $(1,2)$

x	x < 1	1	1 < x
y'		0	+
y	×	2	7


$$(2) y' = -4x+8$$
 ,頂点 $(2,7)$

x	x < 2	2	2 < x
y'	+	0	_
y	7	7	×

< 29ページ. 関数の増減 2 >

x	x < -2	-2	-2 < x < 2	2	2 < x
y'	_	0	+	0	_
y	×	-16	7	16	×

$$y' = 12 - 3x^2$$

= 3(2 - x)(2 + x)

< 30ページ. 関数の増減 1 >

$$(1) \ y' = -3x^2 + 6x$$

x	x < 0	0	0 < x < 2	2	2 < x
y'	_	0	+	0	_
y	×	0	7	4	×

$$(2) y' = 3x^2 - 12x + 9$$

x	x < 1	1	1 < x < 3	3	3 < x
y'	+	0	_	0	+
y	7	4	×	0	7

< 31ページ. 極大・極小 1 >

問の解答

x = -2 のとき極大値 y = 20

x=1 のとき極小値 y=-7

x		-2		1	• • •
y'	+	0		0	+
y	7	20	×	-7	7

< 32ページ. 極大・極小 2 >

問1の解答

(1)
$$y' = -4x^3 + 4x = -4x(x-1)(x+1)$$

 $x = \pm 1$ のとき極大値 y = 6

x = 0 のとき極小値 y = 5

x		-1		0		1	• • •
y'	+	0	_	0	+	0	_
y	7	6	×	5	7	6	×

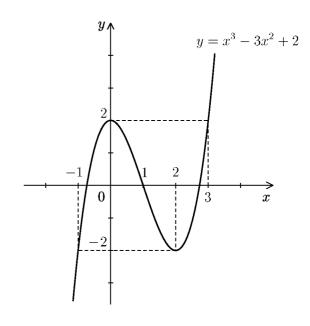
問2の解答

$$(2) y' = 12x^3 - 24x^2 - 36x = 12x(x-3)(x+1)$$

x = 0のとき極大値 y = 0

x = -1 のとき極小値 y = -7

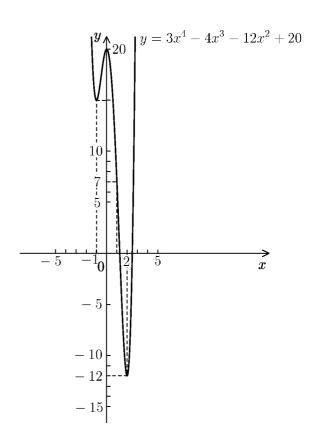
x = 3 のとき極小値 y = -135


x		-1		0	• • •	3	• • •
y'	_	0	+	0	-	0	+
y	×	-7	7	0	×	-135	7

< 33ページ. 関数のグラフ >

$$(1) y = x^3 - 3x^2 + 2$$
$$y' = 3x^2 - 6x$$
$$= 3x(x - 2)$$

x	• • •	0		2	
y'	+	0		0	+
y	7	2	X	-2	7


$$x=0$$
 のとき 極大値 $y=2$ $x=2$ のとき 極小値 $y=-2$

(2)
$$y = 3x^4 - 4x^3 - 12x^2 + 20$$
$$y' = 12x^3 - 12x^2 - 24$$
$$= 12x(x-2)(x+1)$$

x		-1		0		2	• • •
y'	_	0	+	0	_	0	+
y	>	15	7	20	¥	-12	7

$$x = -1$$
 のとき 極小値 $y = 15$ $x = 0$ のとき 極大値 $y = 20$ $x = 2$ のとき 極小値 $y = -12$

< 34ページ. 最大・最小 1 >

問の解答

x	-2		0		3		4
y'	\times	+	0	_	0	+	\times
y	- 3	7	1	\searrow	- 3	7	1

x = 1または4のとき最大値 y = 1

x = 0または3のとき最小値 y = -3

< 35ページ. 最大・最小 2 >

問の解答

$$y = (4 - 2x)(4 - 2x)x$$

$$= 4x^{3} - 16x^{2} + 16x$$

$$y' = 12x^{2} - 32 + 16$$

$$= 4(3x^{2} - 8x + 4)$$

$$= 4(3x - 2)(x - 2)$$

x の範囲 0 < x < 2 で増減表を作る。

x	0		<u>2</u> 3	• • •	2
y'	\times	+	0	-	\times
y	0	7	$\frac{128}{27}$	×	0

(答)
$$x = \frac{2}{3} \, (\mathrm{cm})$$
 のとき、最大容積 $y = \frac{128}{27} \, (\mathrm{cm}^3)$ をとる。

< 36ページ. 時間の関数 >

問1の解答

- (1) 19.6
- (2) 78.4
- (3) 60.025

問2の解答

$$x(0) = 0$$
 $y(0) = 0$

$$x(1) = 19.6$$
 $y(1) = 14.7$

$$x(2) = 39.2$$
 $y(2) = 19.6$

問3の解答

$$x'(t) = \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}$$

$$v'(t) = \lim_{h \to 0} \frac{v(t+h) - v(t)}{h}$$

問4の解答

$$(1) f'(3) = \lim_{h \to 0} \frac{4.9 \times (3+h)^2 - 4.9 \times 3^2}{h}$$

(2)
$$f'(t) = \lim_{h \to 0} \frac{4.9 \times (t+h)^2 - 4.9 \times t^2}{h}$$

問5の解答

$$x'(t) = 29.4$$

$$y'(t) = -9.8t + 29.4$$

$$v'(t) = 0$$

< 37ページ.速度1 >

問1の解答

$$72~(km/h)~=~\boxed{1.2}~(km/min)~=~\boxed{20}~(m/s)$$

$$(1) \ \frac{4.9(3^2-1^2)}{3-1} = 19.6$$

$$(2) \ \frac{4.9(4^2-3^2)}{4-3} \ = \ 34.3$$

$$(3) \ \frac{4.9(3.5^2 - 3^2)}{3.5 - 3} = 31.85$$

$$(4) \ \frac{4.9(3.1^2 - 3^2)}{3.1 - 3} = 29.89$$

< 38ページ.速度 2 >

問1の解答

(1)
$$\frac{4.9(3.01^2 - 3^2)}{3.01 - 3} = 29.449$$
 (m/s)

(2)
$$\frac{4.9\{(3+h)^2-3^2\}}{(3+h)-3} = \frac{4.9(6h+h^2)}{h} = 29.4+4.9h$$
 (m/s)

(3)
$$\lim_{h\to 0} \frac{4.9\{(3+h)^2 - 3^2\}}{(3+h) - 3} = 29.4 \quad (m/s)$$

(4)
$$\lim_{h\to 0} \frac{4.9\{(t+h)^2 - t^2\}}{(t+h) - t} = 9.8t \quad (\text{m/s})$$

問2の解答

$$\lim_{h\to 0} (3$$
 秒後から $3+h$ 秒後までの平均速度) $=\lim_{h\to 0} \frac{f(3+h)-f(3)}{h}$ $\lim_{h\to 0} (t$ 秒後から $t+h$ 秒後までの平均速度) $=\lim_{h\to 0} \frac{f(t+h)-f(t)}{h}$

問3の解答

- (1) 29.4 (m/s)
- (2) 9.8t (m/s)

問4の解答

- (1) f'(3)
- (2) f'(t)

< 39ページ.速度3 >

問1の解答

(1) 19.6 (m/s) (2) 39.2 (m/s)

問2の解答

$$(1) \ v(t) = -9.8t + 29.4 \qquad (2) \ v(0) = 29.4$$

$$(2) v(0) = 29.4$$

(3)
$$t = \frac{29.4}{9.8} = 3$$
 (4) $f(3) = 83.3$ (m)

$$(4) f(3) = 83.3 (m)$$

(答) 3 秒後

< 40ページ.加速度 >

(1)
$$v_x(t) = 10(\cos \theta)$$
 , $v_y(t) = -9.8t + 10\sin \theta$

$$(2) \ v_x'(t) \ = \ 0 \quad , \quad v_y'(t) \ = \ -9.8$$