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ABSTRACT: The cable-stayed bridge is generally a highly statically indeterminate structure.  The 
structural performance of the bridge is highly sensitive to the load distribution among major components of 
the bridge. Therefore, the stayed cables of the cable–stayed bridge should be monitored to prevent bridge 
damage due to earthquake, strong wind, differential settlement, fatigue/defect of the material or loose of 
tension within the cables. That makes the structure health monitoring and diagnosis of the cable forces for 
the optimum structural performance very important in a cable-stayed bridge maintenance procedure. This 
study proposes a structural health diagnosis/monitoring management system for cable-stayed bridges using 
Neural Networks and field measurement data.  The neural networks were used to 1. Analyze reversely the 
corresponding axial forces of all the stayed cables using sets of rotation measured from the pylon and 2. 
Determine the type and degree (scope) of the damaged bridge with ease and efficiency.  Based on the cable 
force evaluated, the structural behavior including the deformation and stress state of the bridge can be traced 
successfully.  Also, the damage state of the cable-stayed bridge can be identified using neural networks 
through the measured cable forces within stayed-cables. A few cases were studied and the results obtained 
could be applied for Cable-Stayed Bridge Management System.  
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1. INTRODUCTION 
 
One of the engineers’ favorite types of bridges is the 
cable-stayed bridge since its special style and the 
need for long span bridge. The span length record for 
the cable-stayed bridge was extended since the 
progress of the design ability as well as the 
break-through of the construction technology 
recently. Since the structural performance of the 
cable-stayed bridge is very sensitive to the load 
distribution among major components of the bridge 
such as pylons, stayed cables and the girders, the 
cables of the bridge should be monitored to prevent 
bridge damage due to earthquake, strong wind, 

differential settlement, fatigue or defect of the 
material as well as loose of tension within the cables. 
The bridge authority in Taiwan works very hard in 
monitoring, maintenance, and retrofitting of the 
bridges to prevent any defects on the bridges and to 
assure the robustness and safety of the bridges since 
most of the cable-stayed bridges play important roles 
in the transportation network. Usually the 
monitoring and maintenance jobs cost lots of money 
and manpower in tradition ways, therefore, the 
structure health diagnosis and monitoring (SHD/M) 
of the post-tensioning cable forces is very important 
for the cable-stayed bridges. An automatic 
monitoring system is needed for the bridge life-cycle 



management to reduce the maintenance cost. New 
technologies such as soft computing tools were used 
in the bridge management system (BMS) and 
feasibility of such application was studied. 
 
In order to prevent the unexpected bridge damage 
and its consequence including the repairing cost, the 
casualty, the traffic impact and indirect economic 
loss, the SHD/M techniques become very important 
recently. Four important factors were mentioned for 
a robust SHD/M system: (a) the instrumentation and 
data collection, (b) the transfer of the measured data 
(signal), (c) the data analysis and the characteristics 
recognition, and (d) the diagnosis of element damage 
and the bridge safety assessment. Several methods 
for SHD/M were developed by the International 
Association for Structural Control and ASCE; 
Grosso et al. (2002) also provided the experience of 
SHM on bridges at Europe. For diagnosis of 
structural damage, Rytter (1993) from Denmark 
proposed that five items should be evaluated: 1. the 
damage occurrence, 2. location, 3. type, 4. scope, 
and 5. its influence to structure safety.  
 
The vibration-based method has been a common 
approach to detect the damage of bridges. The 
methods developed are mainly based on the premise 
that modal parameters, such as natural frequency and 
mode shape, would change as damage forms. 
Theoretically the measurement of the vibration data 
can provide the information about the damage 
occurrence and its location. From that, the dynamic 
characteristics such as mode, frequency and damping 
ratio of the structure can be recognized, if the 
structure is suffered from damage, its natural 
frequency and stiffness matrix will change so the 
structural damage can be diagnosed. In reality, 
modal parameters are, in general, not sensitive to 
damage. The temperature change can induce 
remarkable frequency shift in case of the analyzed 

data coming form girder vibration. In addition, when 
damage forms the major change of modal parameters 
often takes place in higher modes, which needs very 
precise measurement. Later, another vibration-base 
method, which is developed on the basis of cable 
vibration, is proposed to detect the damage of 
cable-stayed bridge. The reason to change the 
monitoring target from girder to stay cable is that in 
comparison with girder it is much easier to extract 
the model parameters of cable from the recorded 
ambient vibration data and the cable forces can be 
determined as its natural frequencies is obtained. 
Because the cable force dominates the stress 
condition of the bridge and also is sensitive to the 
loadings applied to the bridge, it can be an 
appropriate index for the detection of damage. Hence, 
the micro-vibration method is able to provide the 
information we need to evaluate the structure safety 
for cable-stayed bridge. The previous researches on 
recognition of structural dynamic characteristics for 
bridges using measured micro-vibration data 
including Farrar et al (1997), Qin et al (2001), Chen 
et al (2004), indicates the success of the 
micro-vibration method. 
 
This study is further developed using micro- 
vibration measured data combined with grouped 
neural networks for SHD/M. Using neural networks 
with supervised learning (ex. back-propagation 
neural network), the type of the damage as well as its 
scope and influence to structure safety can be 
evaluated. In this paper, the applications of neural 
networks on SHD/M for cable-stayed bridges are 
introduced. This study demonstrates two SHD/M 
cases for cable-stayed bridges using neural networks 
combined with field measurement data. The neural 
networks were used to analyze the corresponding 
axial forces of all the stayed cables using sets of 
rotation measured from the pylon of Mau-Lo-Hsi 
Cable-Stayed Bridge, and also to determine the 



damage type and scope of the Chi-Lu Cable-Stayed 
Bridge using field measured data with ease and 
efficiency. In the case of Mau-Lo-Hsi Cable-Stayed 
Bridge, the neural networks show their potentials to 
evaluate the cable force and trace the structural 
behavior successfully from the rotation angles of the 
pylon while the direct measurement of the cable 
force was in difficulty. Besides, a concept of 
so-called expert group neural networks was proposed 
to mimic the behavior of experts from a committee. 
Furthermore, in the case of Chi-Lu Bridge, the 
neural networks are able to identify the damage state 
of the bridge through the measured forces within 
stayed-cables. The validity of the proposed method 
is confirmed by the numerical studies using 
SAP2000 on several bridge models. The results 
obtained from these cases can be very helpful to the 
SHD/M for cable-stayed bridges in the BMS. 
 

2. NEURAL NETWORKS 
Neural networks are known as a biologically inspired 
soft computing tool that possesses a massively parallel 
structure. The unique structure of neural networks 
provides their learning capabilities, which differs them 
from other mathematically formulated methods, and 
allow the development of neural network based methods 
for certain mathematically intractable problems. The 
neurons of the neural network were able to process the 
signals from the neurons of the previous layer and send 
signals to the neurons at next layers. The knowledge 
learned from the training data was stored in the 
connected weights among the neurons. The whole 
network works as a highly nonlinear system capable of 
dealing problems with imprecise data as well as 
acceptable prediction ability (generalization). Therefore, 
neural network is very suitable for SHD/M applications. 
Since 1989 (Venkatasubramanian and Chan), 
numerous researchers had applied neural networks 
on SHD/M related issues. Pandey and Barai (1995), 
Chan et al (1999), Liu and Sun (1997), Barai and 

Pandey (1997), Huang and Loh (2001), Zhu and 
Qian (2005), had some excellent researches in this 
area. In this paper, the authors proposed solutions 
using grouped neural networks for SHD/M and 
BMS. 

 
2.1 Grouped neural networks 
There are several ways to group neural networks in 
applications. The first one used in this study is called 
Expert Group Neural Network (EGNN). EGNN is 
proposed by Lin and Sung (2006) to determine the 
appropriate axial force combination within the cables 
of the cable stayed bridge. Many neural networks 
trained by different inputs constituted the expert 
group as a committee of experts. Each expert with 
individual expertise could provide the appropriate 
comment (answer) when meeting together, and the 
solution among the comments can be chosen based 
on the optimization methodology. 
 
Besides the EGNN, the Auto Associative Neural 
Network and Probability Neural Network were used in a 
group for SHM at Tsing-Ma Bridge, as Sun et al (2003, 
2004) proposed. Therefore, the authors used a bunch of 
neural networks in BMS to monitor the structural health 
of cable-stayed bridge. The method is applied using the 
field measurement and analysis result from Chi-Lu 
Cable-Stayed Bridge. Several feed-forward back- 
propagation neural networks trained by different 
types of inputs constituted the Grouped Neural 
Network. The architecture of each neural network 
among the group is set to be different. Among them, 
one neural network is with the training data set of 
uniform loading plus differential settlements, while 
another neural network having training datasets of 
other type of loading change such as earthquake, 
wind, etc. Each of the neural networks was used to 
analyze reversely the relationship between the cable 
force and damage scope of the bridge.  

 



3. CASE STUDY 
3.1 Mau-Lo-Hsi Cable-Stayed Bridge 
The superstructure of the Mau-Lo-Hsi Cable-Stayed 
Bridge reveals an asymmetric two-span layout to 
minimize the detrimental influence on hydraulics of 
pylon setting in the central part of the river. Besides, 
the concrete grouting is employed inside the girders 
of the short span as a counter-weight to reduce the 
unbalanced loading arising from the asymmetry of 
the superstructure. A parabolic shape was adopted as 
the geometric skeleton of the pylon for anti-buckling 
performance as well as its aesthetic appearance. It is 
85 m between the two sides of the pylon base and a 
tie-beam arranged at the pylon waist links two 
girders to enhance the lateral stiffness of the decks. 
In addition, an underground steel tie-beam 
connecting the bottoms of the pylon was pre-stressed 
to eliminate the influence of the horizontal shear 
forces due to the dead load on the piles (Fig. 1). 
 

 

Fig. 1. Elevation of the Mau-Lo-Hsi Cable-Stayed 
Bridge. 

 
The EGNN was applied for Mau-Lo-Hsi 
Cable-Stayed Bridge with field measurement data. 
Each of the EGNN were used to predict the 
corresponding axial forces of nearly all the stayed 
cables using 3 sets of rotation angles measured from 
the pylon. Based on the cable force evaluated, the 
structural behavior including the deformation and 
stress state of the bridge can be successfully traced. 

36 cables of Mau-Lo-Hsi Cable-Stayed Bridge were 
grouped into 18 pairs with 9 actual pairs of cables 
attached along the edges of the bridge decks and 
connected to the pylon at two different concentrated 
zones. Because of the relatively short distance 
between the uppermost two pairs of cables above the 
short span, they were simply simulated as one single 
pair with twice the cross sectional area in the 
structure model. The element numbers of eight pairs 
of model cables attached along the left bridge deck 
from short span to long span are indicated as 
501–508, and 511–518 respectively while the 
numbers of the other cables along the right bridge 
deck are indicated as 521–528 and 531–538. As a 
result, the cable forces were regarded as the 
variables for SHM/D of this bridge. 

 
Table 1. The structures of Expert Group Neural 
Network (EGNN) 

No. Structure No. Structure 
EGNN-1 3-75-32 EGNN-11 3-60-60-32
EGNN-2 3-80-32 EGNN-12 3-60-65-32
EGNN-3 3-85-32 EGNN-13 3-65-65-32
EGNN-4 3-90-32 EGNN-14 3-65-75-32
EGNN-5 3-95-32 EGNN-15 3-70-75-32
EGNN-6 3-100-32 EGNN-16 3-75-75-32
EGNN-7 3-105-32 EGNN-17 3-75-85-32
EGNN-8 3-110-32 EGNN-18 3-80-85-32
EGNN-9 3-115-32 EGNN-19 3-85-85-32

EGNN-10 3-120-32 EGNN-20 3-85-90-32
 
20 feed forward back-propagation neural networks 
trained by different inputs constituted the EGNN as a 
committee of experts in this case. The architecture of 
each neural network among EGNN is set to be 
different as described in Table 1. It consisted of one 
input layer with 3 neurons, one or two hidden layers 
and one output layer with 32 neurons. The huge 
amount of training and testing data are evenly and 
exclusively divided into 20 groups to train and test 
20 neural networks in order to form the expert group. 

θ35

θ25

θ15 

 



The EGNN behaved like a group of experts, who 
grew up from different backgrounds with individual 
expertise, and were able to provide the appropriate 
comment when working together as a committee. 
The optimal solution among the comments will be 
chosen with easiness and efficiency. 

 
Table 2. The sample of the input data to the EGNN 
(rotation angles of the pylon, rad.) 

 θ15 θ25 θ35 

Day 1 0.000671 0.001097 0.001049
Day 2 0.000586 0.001073 0.001051

Day 3 0.000765 0.001086 0.00086 

Day 4 0.000558 0.001005 0.001247
Day 5 0.001035 0.001288 0.000909

 
When preparing the training and testing data for 
EGNN, different sets of the rotation angles from the 
top of the pylon were calculated with different 
combination of the axial force within the stayed 
cables of the bridge using SAP2000. Then the 
proposed EGNN were trained to learn the reverse 
relationship between the rotation angles and the 
cable forces. Later, the trained EGNN will be able to 
determine the current axial force within the stayed 
cables of Mau-Lo-Hsi Cable-Stayed Bridge through 
the measured rotation angles from the pylon, and the 
results were verified by the design analysis. Among 
the EGNN, 10 neural networks are with one hidden 
layer of 75-120 neurons while another 10 neural 
networks having two hidden layers with 60-90 
neurons. Using a set of 3 rotation angles from the 
pylon as input (Table 2), the neural networks were 
able to provide the corresponding axial forces of 
stayed cables as their outputs (Table 3). The trained 
neural networks were tested using the measured data 
from the bridge in the field. Several structural 
statuses were provided through these EGNN, and the 
optimal solution among these results will be chosen 
based on the theory of minimum potential energy. 

Based on the cable force evaluated, the structural 
behavior including the deformation and stress state 
of the bridge can be traced successfully. 
 
Table 3. The example of the output data to the 
EGNN (axial force of the stayed cable, ton) 

 Day 1 Day 2 Day 3 
Cable501 821.13 733.39 726.27 
Cable502 413.97 417.47 277.53 
Cable503 266.75 420.00 446.64 
Cable504 236.54 96.01 219.11 
Cable505 178.35 250.03 237.67 
Cable506 362.61 340.35 321.37 
Cable507 359.90 328.03 379.47 
Cable508 325.76 310.69 268.01 
Cable511 746.81 744.51 761.26 
Cable512 302.42 302.85 248.0 
Cable513 196.24 239.51 258.32 
Cable514 168.09 98.09 147.35 
Cable515 348.15 389.60 214.73 
Cable516 334.71 302.31 418.02 
Cable517 408.55 410.96 389.35 
Cable518 171.59 142.08 147.49 
Cable521 861.21 817.32 712.52 
Cable522 456.41 293.78 471.94 
Cable523 151.79 212.72 113.31 
Cable524 211.19 161.07 214.66 
Cable525 193.80 207.77 185.49 
Cable526 392.80 298.14 470.39 
Cable527 377.01 452.97 309.88 
Cable528 221.48 188.08 186.09 
Cable531 607.66 599.08 759.9 
Cable532 334.80 406.15 352.35 
Cable533 263.73 402.58 315.0 
Cable534 116.64 105.65 126.39 
Cable535 285.90 335.87 332.71 
Cable536 458.12 428.70 334.95 
Cable537 267.22 370.01 404.36 
Cable538 251.93 218.33 237.86 

 
3.2 Chi-Lu Cable-Stayed Bridge 
Since the stayed-cable is the main path for load 
distribution on cable-stayed bridges, the change of 



the stress condition within the bridge can be detected 
from the stayed-cables. Besides, the modal 
parameters, such as natural frequency and mode 
shape, can also be evaluated. Hence, the 
vibration-base method developed is proposed to 
detect the damage of cable-stayed bridge. From 
analysis result, when the pylon or the pier of the 
bridge is suffered from damage, the variation of the 
cable force is not as obvious as the variation of the 
modal frequency. However, if the girder suffered 
from the damage, the variation of the cable force is 
much more obvious than the modal frequency. 
Therefore, the monitoring of the cable force plus 
modal frequency is very helpful for us to discover 
the damaged elements as well as the type and the 
scope of the damage to the cable-stayed bridge. 
 

 
Fig. 2. SHM/D for BMS using neural networks for 
cable-stayed bridge. 
 
In the case of Chi-Lu Cable-Stayed Bridge, the cause 
(type) and the scope (degree and location) of the 
un-usual loading condition including differential 
settlement, earthquake, strong wind, distributed 
loading (over layered AC, overweight truck, and 
traffic jam, etc.) were recognized through the in-situ 
measured cable forces of the stayed-cables using 
neural networks. The influence of temperature and 
noise on measurement data is also considered (Fig. 
2). The neural networks were divided into several 
groups for different type of loading. For example, 
one neural network is trained to monitor the 
differential settlement and uniform over-loading, 

while the other neural network is trained to monitor 
the damage caused by the earthquake and the strong 
wind. As for the influence of earthquake, the main 
concern is the re-distribution of the cable force and 
the change of the modal frequency of the bridge. The 
damages on the pylon, the girder, and the pier with 
different location and scope were considered. 
 
The architecture of the neural networks for Chi-Lu 
Cable-Stayed Bridge include 4 layers, which are one 
input layer with 35 neurons, one output layer with 6 
neurons, and 2 hidden layers with adjustable number 
of neurons. The training data were prepared by SAP 
2000 with models of Chi-Lu Cable-Stayed Bridge 
(Table 4).  Several groups of simulated data with 
differential settlements and uniform loading are 
created using analytical models with different 
boundary conditions of Chi-Lu Cable-Stayed Bridge. 
There are 1200 sets of data in each group. 3/4 of the 
data sets were used for training the neural networks 
and the rest of the data were then used to test the 
generalization ability of the trained neural networks. 
The input data for the neural network is the cable 
forces within 34 stayed-cables of the Chi-Lu 
Cable-Stayed Bridge plus noise. The output of the 
neural network indicates the type of the abnormal 
loading, and the scope and the degree of the damage. 
For example, 0-0-1 in the first 3 neurons indicates 
differential settlement was happened and 0-0.10-0.01 
in neurons means there are 10 cm settlement at the 
pylon and 1 cm settlement at the right pier (end of 
bridge). The neural networks were trained first by 
the numerical data, and then the measured field data 
lately for calibration. The results of the trained 
neural networks can successfully distinguish the 
damage type and scope from the measured cable 
force, even with insufficient measurement or error 
within 20%. 
 
 

35 input 
neurons 

6 output 
neurons 

…

Type 

Degree 

Cable 
Force 



Table 4 The example of the training data to the NN 
in Chi-Lu Bridge case 

  1 2 3 
Cable-01 0.00290 0.01775 0.36805
Cable-02 -0.00472 -0.03050 0.36805
Cable-03 0.00152 0.00903 0.41851
Cable-04 -0.00336 -0.02192 0.41850
Cable-05 0.00083 0.00460 0.51729
Cable-06 -0.00289 -0.01901 0.51728
Cable-07 0.00029 0.00123 0.50879
Cable-08 -0.00205 -0.01355 0.50878
Cable-09 0.00003 -0.00035 0.54766
Cable-10 -0.00166 -0.01104 0.54763
Cable-11 -0.00010 -0.00117 0.65601
Cable-12 -0.00147 -0.00982 0.65596
Cable-13 -0.00010 -0.00093 0.66282
Cable-14 -0.00088 -0.00590 0.66274
Cable-15 0.00004 0.00020 0.65411
Cable-16 -0.00018 -0.00121 0.65400
Cable-17 0.00029 0.00215 0.63103
Cable-18 0.00064 0.00439 0.63087
Cable-19 0.00065 0.00485 0.59448
Cable-20 0.00162 0.01099 0.59428
Cable-21 0.00109 0.00821 0.54541
Cable-22 0.00274 0.01862 0.54517
Cable-23 0.00202 0.01514 0.62245
Cable-24 0.00498 0.03386 0.62209
Cable-25 0.00223 0.01669 0.41507
Cable-26 0.00542 0.03687 0.41474
Cable-27 0.00360 0.02684 0.43223
Cable-28 0.00862 0.05869 0.43178
Cable-29 0.00447 0.03334 0.32275
Cable-30 0.01062 0.07231 0.32368
Cable-31 0.00536 0.03996 0.21107
Cable-32 0.01267 0.08627 0.21119 
Cable-33 0.00503 0.03749 0.07592

I 
N 
P 
U 
T 
 
︵

C 
A 
B 
L 
E 
 
F 
O 
R 
C 
E 
︶

Cable-34 0.01184 0.08059 0.07659
0 0 0 
0 0 1 

Type 

1 1 0 
0 0 0.67333

0.01 0.06 0.67333

O 
U 
T 
P 
U 
T 

Damage 
Scope, 
Location  0.03 0.19 0.67333

 

4. CONCLUSIONS 
This paper presents the new concept of structural 
health diagnosis/monitoring (SHM/D) with neural 
networks for cable-stayed bridges. Combined with 
the bridge safety index and alert or action level 
described in the bridge maintenance guideline, this 
technology can be integrated within the bridge 
management system and the safety of the 
cable-stayed bridge can be assured with the reduced 
maintenance cost. In the case of Mau-Lo-Hsi 
Cable-Stayed Bridge, the optimal determination of 
the post-tensioning cable forces for the best 
structural performance was considered as the main 
target in our SHM/D. The new concept of grouping 
the neural networks called Expert Group Neural 
Networks is proposed to assist conducting the 
SHM/D using field measurement data. The 
corresponding axial forces of all the stayed cables 
were evaluated reversely through EGNN from the 
rotation angles measured from the pylon. The 
structural behavior including the deformation and 
stress state of the bridge can be traced easily based 
on the cable force evaluated. In the case of Chi-Lu 
Cable-Stayed Bridge, the cause and the scope of the 
abnormal loading condition on the bridge including 
differential settlement, earthquake, strong wind, 
distributed loading can be recognized using grouped 
neural networks and measured cable forces. The 
field engineers can be assisted with the proposed 
methodologies to simplify the procedure while 
conducting the regular maintenance tasks for 
cable-stayed bridges. Meanwhile, the applications of 
neural networks on SHD/M of cable-stayed bridges 
show the feasibility and huge potential on 
implementing the next generation cable-stayed 
bridge management system. 
 

REFERENCES 
Barai, S.V., and Pandey, P.C. 1997, Time-Delay 
Neural Networks in Damage Detection of Railway 



Bridges, Adv. in Eng. Software, Vol. 28, pp.1-10. 
 
Chan, T.H., Ni, Y.Q., and Ko, J.M. 1999, Neural 
Network Novelty Filtering for Anomaly Detection of 
Tsing Ma Bridge Cables, Structural Health 
Monitoring 2000, Stanford University, Palo Alto, 
California, USA, pp. 430-439. 
 
Chen, J., Xu, Y.L., Zhang, R.C. 2004, Modal 
Parameter Identification of Tsing Ma Suspension 
Bridge under Typhoon Victor: EMD-HT Method, J. 
Wind Eng. and Indus. Aerodyn., Vol.92 805-827. 
 
Department of Structure-I., 1996, Engineering 
Drawing of Mau-Lo-Hsi Cable-Stayed Bridge. 
Taiwan: China Engineering Consultants, Inc. [in 
Chinese]. 
 

Farrar, C.R., and James, G. H. Ⅲ, 1997, System 
Identification from Ambient Vibration 
Measurements on a Bridge, J. Sound and Vibration, 
Vol. 205(1), pp. 1-18. 
 
Grosso, A.D., Inaudi, D., and Pardi, L., 2002, 
Overview of European Activities in the Health 
Monitoring of Bridges, First International 

Conference on Bridge Maintenance, Safety and 
Management, July, pp.14-17. 
 
Huang, C.C., and Loh C.H., 2001, Nonlinear 
Identification of Dynamic System Using Neural 
Networks, J. Computer-Aided Civil Infrastructure 
Engineering, Vol.16, pp. 28–41 
 
Liu, P.L., and Sun, S.C., 1997, The Application of 
Artificial Neural Networks on the Health Monitoring 
of Bridges, Structural Health Monitoring, Current 
Status and Perspectives, Stanford University, Palo 
Alto, California, USA, pp.103-110. 
 

Pandey P.C., and Barai S.V., 1995, Multilayer 
Perceptron in Damage Prediction of Bridge 
Structures, Computers and Structures, Vol.54, No.4, 
pp. 597–608 
 
Qin, Q., Li, H.B., Qian, L.Z., and Lau, C.-K. 2001, 
Modal Identification of Tsing Ma Bridge by Using 
Improved Eigensystem Realization Algorithm, J. 
Sound and Vibration, Vol.247, No.2, pp.325- 341. 
 
Rytter, A., 1993, Vibration Based Inspection of Civil 
Engineering Structures, Ph.D. Dissertation, Dept. of 
Building Technology and Structural Eng., Aalborg 
University, Denmark. 
 
Sohn, H., 2003, A Review of Structural Health 
Monitoring Literature, Proceedings of the Third 
World Conference on Structural Control. Vol.2. pp. 
1996-2001 
 
Sun, C.K., Ni, I.C., and Kao, C.M. 2003, 
Cable-Stayed Bridge Damage Location Recognition 
Using Neural Networks with Cable Vibration 
Measurement, J. Eng. Mech., Vol.20, No.3 [in 
Chinese]. 
 
Sun, C.K., Kao, C.M., and Ni, I.C. 2004, Bridge 
Damage Location Recognition Using Neural 
Networks, J. Eng. Mech., Vol.21, No.1, pp.42-47 [in 
Chinese]. 
 
Venkatasubramanian, V., and Chan, K., 1989, A 
Neural Network Methodology for Process Fault 
Diagnosis, J. AICHE, Vol.35, No.12, pp. 1993–2002 
 
Zhu, H.P., and Qian, L. 2005, Structural Damage 
Recognition with Vibration Modal Measurement 
Using Neural Network, Computational Mechanics, 
Vol.2. [in Chinese]. 


